傅星珵 博士
职称:讲师/硕导
研究方向/教研室:计算机软件教研室
通信地址:广西桂林市七星区育才路15号广西师范大学计算机科学与工程学院
学术主页:https://fuxingcheng.github.io/
[个人简介] [研究兴趣] [工作经历][科研项目] [代表性成果][主要教学工作]
傅星珵,男,壮族,籍贯广西河池宜州市,博士/讲师,硕士研究生导师。2023年6月毕业于北京航空航天大学,获网络空间安全专业工学博士学位。主要研究方向为人工智能科学智算(AI4SCI)、人工智能教育系统(AI4EDU)、几何深度学习(Geometric Deep Learning)等。主持国家自然科学基金1项,教育部重点实验室/广西重点实验室开放课题2项,参与科技部重大项目2项。近五年在TKDE、ICML、NeurIPS、WWW、AAAI等CCF-A/B类国际权威学术期刊和顶级会议发表学术论文30余篇,获CCF-A类国际互联网技术顶级会议WWW 2023焦点论文-最佳论文提名奖(一作论文,全会16篇,网络和图领域唯一1篇)、国际数据挖掘顶级会议ICDM 2021最佳论文提名、ICDM 2022最佳排名论文、CIKM 2022最佳论文荣誉提名奖。获2022年北京市大数据与脑机智能高精尖创新中心卓越研究奖、2021年中国“互联网+”北京市一等奖、北航计算机学院抗疫突出贡献奖等;担任国际著名期刊TKDE、TNNLS、TWEB、JMLC和国际顶级会议NeurIPS、ICLR、ICML、WWW、AAAI、KDD、ICDM审稿人。
人工智能科学智算(AI for Science,AI4SCI)
人工智能教育系统(AI for Education,AI4EDU)
几何深度学习(双曲几何/黎曼几何学习)
低失真图表示学习
2024.11 - 至今 :广西师范大学, 教育区块链与智能技术教育部重点实验室, 特聘研究员。
2023.10 - 至今 :广西师范大学, 计算机科学与工程学院, 讲师。
2018.09 - 2023.06:北京航空航天大学, 计算机学院, 网络空间安全. 博士。
2015.09 - 2017.12:广西师范大学, 计算机科学与信息工程学院, 软件工程. 硕士。
2006.09 - 2010.06:解放军信息工程大学, 通信工程. 本科。
国家自然科学基金,地区科学基金项目,“基于几何深度学习的社交网络关键结构可信挖掘方法研究”,2025.01-2028.12,32万元,项目负责人,在研
教育区块链与智能技术教育部重点实验室系统性研究课题,“层次化知识追踪和可解释多模态大模型教育辅导研究”,2025.01-2025.12, 8万元,项目负责人,在研
广西多源信息挖掘与安全重点实验室系统性研究课题,“基于图几何学习的社交网络恶意检测”,2025.01-2026.12,10万元,项目负责人,在研
科技部,科技创新2030 -“新一代人工智能”重大项目,“人工智能科学计算共性平台”,2023-03 至 2026-02,8800万元,参与,在研
科技部,科技创新2030 -“新一代人工智能”重大项目,“公共卫生事件的关联识别与追踪溯源方法”,2021-12 至 2024-11,600万元,参与,结题
代表作论文
Xingcheng Fu*, Yisen Gao(本科实习生-大三), Yuecen Wei, Qingyun Sun, Hao Peng, Jianxin Li and Xianxian Li*. Hyperbolic Geometric Latent Diffusion Model for Graph Generation. International Conference on Machine Learning, ICML 2024. (CCF-A类,机器学习&人工智能国际三大顶级会议)
Xingcheng Fu, Yuecen Wei, Qingyun Sun, Haonan Yuan, Jia Wu, Hao Peng and Jianxin Li*. Hyperbolic Geometric Graph Representation Learning for Hierarchy-imbalance Node Classification. The Web Conference, WWW 2023. (CCF-A类,互联网多媒体国际顶级会议, Splotlight焦点论文,全会16篇,网络和图领域唯一1篇)
Xingcheng Fu, Jianxin Li*, Jia Wu, Qingyun Sun, Cheng Ji, Senzhang Wang, Jiajun Tan, Hao Peng, Philip S. Yu. ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network. IEEE International Conference on Data Mining, ICDM 2021. (CCF-B类,数据挖掘国际顶级会议, 最佳论文提名奖)
Xingcheng Fu*, Yisen Gao, Beining Yang, Yuxuan Wu, Haodong Qian, QingyunSun, Xianxian Li. Bi-Directional Multi-Scale Graph Dataset Condensation viaInformation Bottleneck. AAAI 2025. (CCF-A类会议,人工智能国际顶级会议)
Xingcheng Fu*, Jian Wang, Yisen Gao, Qingyun Sun*, Haonan Yuan, JianxinLi, Xianxian Li. Discrete Curvature Graph Information Bottleneck. AAAI 2025. (CCF-A类会议,人工智能国际顶级会议)
学术论文
Tianyu Chen, Xingcheng Fu, Yisen Gao, Haodong Qian, Yuecen Wei, Kun Yan, Haoyi Zhou, Jianxin Li. Galaxy Walker: Geometry-aware VLMs For Galaxy-scale Understanding. CVPR 2025. (CCF-A类会议,计算视觉国际顶级会议,Highlight, Top-13.5%)
Robust Graph Learning Against Adversarial Evasion Attacks via Prior-Free Diffusion-Based Structure Purification, Beining Yang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Jianxin Li. (CCF-A类,互联网多媒体国际顶级会议)
IGL-Bench: Establishing the Comprehensive Benchmark for Imbalanced Graph Learning. Jiawen Qin, Haonan Yuan, Qingyun Sun, Lyujin Xu, Jiaqi Yuan, Pengfeng Huang, Zhaonan Wang, Xingcheng Fu, Hao Peng, Jianxin Li, Philip S. Yu. ICLR 2025. (机器学习&人工智能国际三大顶级会议)
ST-GCond: Self-supervised and Transferable Graph Dataset Condensation, Jiayi Luo, Qingyun Sun, Haonan Yuan, Xingcheng Fu, Jianxin Li. ICLR 2025. (机器学习&人工智能国际三大顶级会议)
Yuecen Wei, Xingcheng Fu, Lingyun Liu, Qingyun Sun, HaoPeng, Chunming Hu*. Prompt-based Unifying Inference Attack on Graph Neural Networks. AAAI 2025. (CCF-A类会议,人工智能国际顶级会议).
Zihao Guo, Qingyun Sun, Haonan Yuan, Xingcheng Fu, Min Zhou, Yisen Gao, Jianxin Li*. GraphMoRE: Mitigating Topological Heterogeneity via Mixture of Riemannian Experts. AAAI 2025. (CCF-A类会议,人工智能国际顶级会议)
Haonan Yuan, Qingyun Sun, Zhaonan Wang, Xingcheng Fu, ChengJi, Yongjian Wang, Bo Jin, Jianxin Li*. REDGSL: Advancing Robust Graph Representation via Efficient Dynamic Graph Structure Learning. AAAI 2025.(CCF-A类会议,人工智能国际顶级会议)
Xingcheng Fu, Jianxin Li*, Jiawen Qin, Jia Wu, Qingyun Sun, Cheng Ji, Senzhang Wang, Hao Peng, Philip S. Yu. Adaptive Curvature Exploration Geometric Graph Neural Network. Knowledge And Information Systems, KAIS 2023. (CCF-B类,数据挖掘国际顶级期刊)
Yuecen Wei, Haonan Yuan, Xingcheng Fu*(共同通讯作者), Qingyun Sun, Hao Peng, Xianxian Li and Chunming Hu*. Poincaré Differential Privacy for Hierarchy-Aware Graph Embedding. AAAI Conference on Artificial Intelligence, AAAI 2024. (CCF-A类,人工智能国际顶级会议)
Jianxin Li*(博士生导师), Xingcheng Fu(学生一作), Hao Peng, Senzhang Wang, Shijie Zhu, Qingyun Sun, Philip S. Yu, Lifang He. A Robust and Generalized Framework for Adversarial Graph Embedding, IEEE TKDE, 2023. (JCR Q1, CCF-A类,数据挖掘国际顶级期刊, IF=9.235)
Jianxin Li*(博士生导师), Xingcheng Fu(学生一作), Qingyun Sun, Cheng Ji, Jiajun Tan, Jia Wu, Hao Peng. Curvature Graph Generative Adversarial Networks. The Web Conference, WWW 2022. (CCF-A类,互联网技术国际顶级会议)
Qingyun Sun, Jianxin Li*, Haonan Yuan, Xingcheng Fu, Hao Peng, Cheng Ji, Qian Li, Philip S. Yu. Position-aware Structure Learning for Graph Topology-imbalance by Relieving Under-reaching and Over-squashing. ACM International Conference on Information and Knowledge Management, CIKM 2022. (CCF-B类,数据挖掘国际顶级会议, 最佳论文荣誉提名奖)
Yuecen Wei, Xingcheng Fu, Qingyun Sun, Hao Peng, Jia Wu, Jinyan Wang*, Xianxian Li*. Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation. IEEE International Conference on Data Mining, ICDM 2022. (CCF-B类,数据挖掘国际顶级会议,最佳排名论文)
Yuecen Wei, Xingcheng Fu, Dongqi Yan, Qingyun Sun, Hao Peng, Jia Wu, Jinyan Wang*, Xianxian Li*. Heterogeneous graph neural network with semantic-aware differential privacy guarantees. Knowledge And Information Systems, KAIS. (CCF-B类,数据挖掘国际顶级期刊)
Qingyun Sun, Ziying Chen, Beining Yang, Cheng Ji, Xingcheng Fu, Sheng Zhou, Hao Peng, Jianxin Li, Philip S. Yu. GC-Bench: An Open and Unified Benchmark for Graph Condensation. Advances in Neural Information Processing Systems, NeurIPS 2024. (CCF-A 类,机器学习&人工智能国际三大顶级会议)
Jiawen Qin, Pengfeng Huang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Jianxin Li. Graph Size-imbalanced Learning with Energy-guided Structural Smoothing. ACM International Conference on Web Search and Data Mining, WSDM 2025. (CCF-B类,数据挖掘国际顶级会议)
Qingyun Sun, Jianxin Li*, Hao Peng, Jia Wu, Xingcheng Fu, Cheng Ji, Philip S. Yu. Graph Structure Learning by Variational Information Bottleneck. AAAI Conference on Artificial Intelligence, AAAI 2022. (CCF-A类,人工智能国际顶级会议)
Haonan Yuan, Qingyun Sun, Xingcheng Fu, Cheng Ji and Jianxin Li. “Dynamic Graph Information Bottleneck.” The Web Conference, WWW 2024. (CCF-A类,互联网技术国际顶级会议)
Qingyun Sun, Jianxin Li*, Beining Yang, Xingcheng Fu, Hao Peng, Philip S. Yu. Self-organization Preserved Graph Structure Learning with Principle of Relevant Information. AAAI Conference on Artificial Intelligence, AAAI 2023. (CCF-A类,人工智能国际顶级会议)
Yuan, Haonan, Qingyun Sun*, Xingcheng Fu, Ziwei Zhang, Cheng Ji, Hao Peng and Jianxin Li. Environment-Aware Dynamic Graph Learning for Out-of-Distribution Generalization. Advances in Neural Information Processing Systems, NeurIPS 2023. (CCF-A 类,机器学习&人工智能国际三大顶级会议)
Yang, Beining, Kai Wang, Qingyun Sun*, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You and Jianxin Li. Does Graph Distillation See Like Vision Dataset Counterpart?. Advances in Neural Information Processing Systems, NeurIPS 2023. (CCF-A 类,机器学习&人工智能国际三大顶级会议)
Quanmin Wei, Jinyan Wang*, Xingcheng Fu, Jun Hu, Xianxian Li. AIC-GNN: Adversarial Information Completion for Graph Neural Networks. Information Sciences. (SCI一区,CCF-B 类期刊)
Cheng Ji, Tao Zhao, Qingyun Sun, Xingcheng Fu, Jianxin Li*. Higher-order Memory Guided Temporal Random Walk for Dynamic Heterogeneous Network Embedding. Pattern Recognition. (SCI一区,CCF-B 类期刊)
Cheng Ji, Jianxin Li*, Hao Peng, Jia Wu, Xingcheng Fu, Qingyun Sun, Philip S. Yu. Unbiased and Efficient Self-Supervised Incremental Contrastive Learning. ACM International Conference on Web Search and Data Mining, WSDM 2023. (CCF-B类,数据挖掘国际顶级会议)
Junnan Liu, Qianren Mao, Jianxin Li*, Xingcheng Fu, Zheng Wang. POINE2 : Improving Poincaré Embeddings for Hierarchy-Aware Complex Query Reasoning over Knowledge Graphs. ECAI 2023. (CCF-B 类,人工智能欧洲顶级会议)
发明专利
李建欣; 周号益; 张帅; 陈天宇; 朱天晨; 刘瀚骋; 傅星珵 ; 一种智能流行病学调查系统, 2022-08- 30, 中国, CN202110589720.6
李建欣; 孙庆赟; 傅星珵; 朱时杰; 季诚; 董翔宇; 一种基于生成对抗网络模型的多层学术网络社区发现方法、系统, 2022-01-28, 中国, CN201911393726.5
李建欣; 孙庆赟; 杨贝宁; 彭浩; 季诚; 傅星珵 ; 一种化学分子结构的图神经网络表征方法及装置, 2021-05-28, 中国, CN202110589957.4
李先贤; 许元馨; 王利娥; 刘鹏; 傅星珵; 蒋权 ; 基于不确定图的社会网络数据差分隐私保护方法, 2021-07-27, 中国, CN201711176686.X
李先贤; 傅星珵; 王利娥; 刘鹏; 褚宏光 ; 非独立同分布环境下的多相关性差分隐私矩阵分解方法, 2021-02-19, 中国, CN201711065040.4
奖励荣誉
2023.06,北京航空航天大学优秀毕业生
2022.06,北京航空航天大学优秀学术创新成果奖
2022.03,北京航空航天大学计算机学院研究生“创新奖”(团队)
2022.01,北京市大数据与脑机智能高精尖创新中心卓越研究奖
2021.08,中国“互联网 +”大学生创新创业大赛北京市一等奖
2021.01,北京航空航天大学“优秀研究生”
2020.09,北航计算机学院抗疫突出贡献奖
2020.05,国务院办公厅感谢函,《科技日报》头版报道
可计算理论(研究生课程)
数据可视化技术(本科生课程)
大学计算机(本科生课程)
算法设计与分析(本科生课程)