蒋静,1984年生,2015年毕业于筑波大学(日本),博士,硕士生导师。2015年获得广西高校引进海外高层次人才称号。
目前主要研究方向为多媒体版权保护,编码密码,编码分布式计算。先后主持国家自然科学基金项目2项、广西自然科学基金项目2项,和广西师范大学自然科学基金项目2项。目前已发表30余篇学术论文,SCI收录20余篇,EI收录8篇,其中信息论国际顶级期刊《IEEE Transactionson Information Theory》收录1篇,通信领域顶级期刊《IEEE Transactions on Communications》收录5篇,国际密码学三大期刊之一《Designs,Codes and Cryptography》收录6篇。
目前主持基金项目
[1] 多媒体指纹码的构造与追踪算法研究,国家自然科学基金,编号:12261012,负责人,2023.1 -2026.12。
[2] 多媒体指纹码的系统研究,国家自然科学青年科学基金,编号:11601096,负责人,2017.1 -2019.12。
[3] 强多媒体父辈认证码的系统研究,广西自然科学基金面上项目,编号:2021GXNSFAA220124,负责人,2021.11-2024.10
[4]. 两类指纹码的系统研究,广西自然科学基金(回国基金项目),编号:2016GXNSFCA380021,负责人,2016.9 -2019.8。
[5]. 多媒体父辈认证码的构造,广西师范大学自然科学基金(重点项目),编号:2015ZD002,负责人,2016.1-2018.12。
2. 代表性论文
[1] J.Jiang, Fenggui Pei, Cailin Wen, Minquan Cheng, Henk D.L. Hollmann,Constructions of t-Strongly Multimedia IPP Codes with Length t+1,Designs, Codes and Cryptography, 92(10), pp. 2949-2970, 2024. ( SCI二区,CCF-B类 )
[2] Cailing Wen, J.Jiang, 2-separable codes with length 5,Discrete Mathematics,346(8),113466, 2023. ( SCI )
[3]J.Jiang, Wenhan Wang and Lingling Zhou, Cascaded Coded Distributed Computing Schemes Based on Symmetric Designs, IEEE Transactions on Communications, 70(11), pp. 7179-7190, 2022. ( SCI二区,CCF-B类,Top )
[4] J.Jiang and Lingxiao Qu, Cascaded coded distributed computing schemes based on placement delivery arrays,IEEE Access, 8, pp. 221385-221395, 2020. ( SCI )
[5] Minquan Cheng, Wenyu Zhang and J.Jiang, Some New Coded Caching Schemes with Smaller Subpacketization via Some Known Results, IEEE Access, 8, pp. 86305-86315, 2020. ( SCI )
[6]X. Zhong, M. Cheng and J. Jiang, Placement delivery array based on concatenating construction, IEEE Communications letters, 24(6), pp. 1216-1220, 2020. ( SCI )
[7] J.Jiang and M. Cheng, Regular (k,R,1)-packings with max(R)=3 and their locally repairable codes, Cryptography and Communications-Discrete Structures, Boolean Functions and Sequences, 12(6), pp. 1071-1089, 2020. ( SCI )
[8] J.Jiang, Y. Gu and M. Cheng, Multimedia IPP codes with efficient tracing, Designs, Codes and Cryptography, 88(5), pp. 851-866, 2020. (SCI二区,CCF-B类)
[9] M.Cheng, J.Jiang, X.Tang and Q.Yan, Some variant of known coded caching schemes with good performance, IEEE Transactions on Communications, 68(3), pp. 1370-1377, 2020. ( SCI二区,CCF-B类,Top )
[10] M.Cheng, J.Jiang, Q.Yan and X.Tang, Constructions of coded caching schemes with flexible memory size, IEEE Transactions on Communications, 67(6), pp. 4166 - 4176, 2019. ( SCI二区,CCF-B类,Top )
[11] M.Cheng, J.Jiang, Q.Wang and Y.Yao, A generalized grouping scheme in coded caching, IEEE Transactions on Communications, 67(5), pp. 3422-3430, 2019. ( SCI二区,CCF-B类,Top )
[12] M.Cheng, J.Jiang and Q.Wang, Improved bounds on 2-frameproof codes with length 4, Designs, Codes and Cryptography, 87(1), pp. 97-106, 2019. ( SCI二区,CCF-B类 )
[13] X. Zhang, J.Jiang and M. Cheng, Bounds and constructions for 3-strongly separable codes with length 3, Cryptography and Communications-Discrete Structures, Boolean Functions and Sequences, 10(3), pp. 555-565, 2018. ( SCI )
[14] M. Cheng, J.Jiang and X. Tang, Asymptotically optimal 2-separable codes with length 4, Cryptography and Communications, 9 (3), 397-405, 2017. ( SCI )
[15] M. Cheng, H. Fu, J.Jiang, Y. Lo and Y. Miao, Codes with the identifiable parent property for multimedia fingerprinting, Designs, Codes and Cryptography, 83 (1), 71-82, 2017. (SCI二区,CCF-B类)
[16] M. Cheng, J.Jiang, H. Li, Y. Miao and X. Tang, Bounds and constructions for 3-separable codes with length 3, Designs, Codes and Cryptography, 81 (2), 317-335, 2016. (SCI二区,CCF-B类)
[17] J.Jiang, M. Cheng and Y. Miao, Strongly separable code, Designs, Codes and Cryptography, 79 (2), 303-318, 2016. (SCI二区,CCF-B类)
[18] M. Cheng, H. Fu, J.Jiang, Y. Lo and Y. Miao, New bounds on 2-separable codes of length 2, Designs, Codes and Cryptography, 74 (1), 31-40, 2015. ( SCI二区,CCF-B类 )
[19] M. Cheng, J.Jiang and D. Wu, Bounds and constructions for two-dimensional variable-weight optical orthogonal codes, Journal of Combinatorial Designs, 22 (9), 391-408, 2014. ( SCI )
[20] J.Jiang, D. Wu and M. H. Lee, Some infinite classes of optimal (v, {3, 4}, 1, Q)-OOCs with Q = {(1/3, 2/3), (2/3, 1/3)}, Graphs and Combinatorics, 29 (6), 1795-1811, 2013. ( SCI )
[21] J.Jiang, D. Wu and P. Fan, General constructions for (v, 4, 1) optical orthogonal codes via perfect difference families, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E95-A(11): 1921-1925, 2012. ( SCI )
[22] J.Jiang, D. Wu and P. Fan, General constructions of optimal variable-weight optical orthogonal codes, IEEE Transactions on Information Theory, 57 (7), 4488-4496, 2011. (SCI,CCF-A类,Top)